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CONVERGENCE OF EXTENDED LAGRANGE INTERPOLATION 

GIULIANA CRISCUOLO, GIUSEPPE MASTROIANNI, AND DONATELLA OCCORSIO 

ABSTRACT. The authors give a procedure to construct extended interpolation 
formulae and prove some uniform convergence theorems. 

1. INTRODUCTION 

Let X = {xm in i = 1, ..., m, m c N} be a matrix of knots belonging 
to I : [-1, 1 ] . For a given bounded function f, the corresponding Lagrange 
polynomial interpolating at the points xm i, i = 1, ..., In, is denoted by 
Lm(X; f). If Y = {yj =1,j 1,. ., n, n E N} is another matrix of knots 
belonging to I, then we define the "extended interpolation polynomial" as the 
Lagrange polynomial Lmrn(X, Y; f) of degree m + n - 1 which interpolates 
the function f at the points xm i, i- = . m, and Yn , n. 
Since 

(1.1) L Lm(X, Y;f)=q0Lm(X; fqn )+pmLn(Y;fpm ) 

where 
m n 

Pm(X) F Jl(X Xm,i), qn(X) fl(x -ynj), 
i=1 j=1 

the extended interpolating polynomial makes sense when the polynomials Pm 
and qn have no common zeros for every fixed m, n c N. 

Even though it is easy to construct extended interpolating formulae, the study 
of their convergence is difficult, in general. Extended interpolation processes 
have been proposed to find the numerical solution of functional equations [1, 
2], and they are used especially for numerical quadrature (extended quadrature 
formulae). Quadratures of this type have been studied by several authors (see 
[5, 6, 9]). 

The main purpose of this paper is to give a new method of constructing 
"good" formulae of extended interpolation Lmr+n(X, Y; f); namely, we shall 
assume that the elements of the matrix X coincide with the zeros of some 
orthogonal polynomials in I with respect to a weight function w and then 
construct the knots of the matrix Y so that they are also zeros of orthogonal 
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polynomials in I with respect to a weight related to w. For each extended 
interpolation formulae we shall prove uniform convergence theorems. 

2. EXTENDED INTERPOLATION FORMULAE 

Let diu be a finite positive measure on [- 1, 1] with an infinite set as support 
and let Pm(dui; x) = Ym(du)xm + , ym(diu) > 0, m c N, be the correspond- 
ing system of orthonormal polynomials, that is 

/Pm (d'U; X)P, (d'U; x) d'U(x) = Jm, n 

We write the three-term recurrence formula satisfied by pm(d,u) as 

xpm(dj; x) = am+ipm+I(dy; x) + bmpm(di; x) + ampm_ 1(di; x); 

p-1(dy; x) = 0, 

where 

m = 0, 1,...; am = am(d) = ym (dji)/ym(dy); 

bm= bm (d) =]xPm{du; x)2d,u(x). 

We now say that the measure diu is in the class M (Nevai's class) if 

lim am(d) = 2 and lim bm(d) = 0? 

The class M is sufficiently large to be of significant interest and has been 
thoroughly studied in [11]. For our purpose it is enough to know that if 
d,u(x) = w(x)dx, supp(d,u) = [-1,1], and w(x) > 0 a.e. in [-1, 1], then 
dy cEM [12, p. 52]. 

We use in the sequel the following theorem which is a direct consequence of 
a result by Mate, Nevai, and Totik [8, p. 70, Theorem 1 1]. 

Theorem 2.1. Let d,u e M and let g be a nonnegative du-integrable function. 
Assume, further, that there exists a polynomial R such that Rg and Rg 1 are 
Riemann integrable in [-1, 1]. Then gdu E M and 

lim ym(gdi)/ym(di) = exp {- + f log g(x) dx} 

In the following we consider only d,-absolutely continuous measures. Then, 
letting {pm (w) } be the system of orthonormal polynomials corresponding to 
the weight function w, we denote by X(w) the triangular matrix 

X(W) ={xm i(w), i= 1, ..., m, m E N}, 

where xm i (w), i = 1, ... , m, are the zeros of Pm(w) ordered increasingly, 
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The Christoffel constants Ami(W), i = 1, ..., m, are defined by Am i(W) = 

Am (w; xm i (w) ), where 

-m-1 -1 

)AM(W; x) = P2 (w; x) 
i=O 

is the mth Christoffel function. 
We are now able to state the following theorems which are essential for the 

construction of our interpolation formulae. 

Theorem 2.2. If w is any weight function and w(x) = (1 - X2)W(X), then the 
polynomial Q2m+1 = Pm(w)Pm+1 (w) satisfies 

(2.1) Qm?i(Xm i(L))=-Cm A' i(UT), i = , ...,m, m E N, 

(2.2) Q;m+i(xm+i,i(w)) = CmA+ (w)(1 -x,+l i(W))1 
i= , ...,m+ , meN, 

where Cm = ymQ(W)ym (W) + Ym+ I (W)YQm () < 00 

Hence, the zeros Xm 1(i) of pm(UT) interlace with the zeros xm+? i(w) of 
Pm+i(w), i.e., 

Xm+? ii(W) < xm i(W) < Xm+? i?+(w), i=l,...,m. 

Proof. We make use of a technique already used by Nevai in [10]. First, we 
consider the Fourier expansion of (1 - X2)pm (U; X) in the system {Pk (W) }: 

m+2 

(2.3) (1 -x 2)pm(T; x) = , akpk(w; x), 
k=m 

where 

1~~~~~~ 
ak = Pk(W; x)(l X )pm (w; x)w(x) dx, k = m, m+ 1, m+2. 

In particular, am = Ym(w)/ym(T) and am+2 = - Ym(UH)/Ym+2(W) (cf. [10, p. 
40]). Since 

xpm(w; x) = am+lpm+i(w; x) + bmpm(w; x) + ampm_ (w; x) 

with am = YmI(w)/ym(w) , we deduce 

P (WJ; xm iYm= 1(W)Ym2 ( ) Pm( )I(W; Xm i(W)) 
Pm+( M,Xmi(W)V 

= 
2(w) 

This last relation, together with (2.3), gives us 

(2.4) (1 -x2+l 1(w))p,nQw; xm+ i(w)) = Ampn(w; Xm+ii(W)) 

with 
Ym(w) Ym (i)Ym (w) Am + 2 > 0. M 
Y (UT) v .2 W 



200 G. CRISCUOLO, G. MASTROIANNI, AND D. OCCORSIO 

We now also consider the Fourier expansion of Pm+ I (w) in the system {Pk (W ) }, 

m+l 

(2.5) pm+?(W;;X) S bkpk(T;X), 
k=mr-l 

where 

bk JPk(WU; X)Pm+l(W;X)(lX 
_ )W(x)dx, k=m-l,m,m+1. 

In particular, bmrI = - Ym_(T)/ym+r(w) and bm+l = Ym+i(w)/Ym+r(?V). 
Then by (2.5), 

(2.6) Pm+I(W ;xm i(W))= -Bmpm (U;xm, Xi(W)) 

with 

Bm= yM_ I(7) + YM+i(W)Ymni(W) > 0. 

Moreover, recalling Theorem 2.1, we conclude that the sequences {Am } and 

{Bm} are convergent. In particular, the relations (2.4) and (2.6) give us that 
the zeros of pmr(w) are different from the zeros of p,n+l (w). 

Now, since 

Q2m+rI(Xm,i( W))= P(UT; xmr i(UT))Pm+I(w ;xm,i(W)) 

Q/m+1(X (;M+ 1, i() = PM+ I ;M+ ,i (w))Pm (UT; XM+i( 
and recalling that for any weight u 

(2.7) pn(U; x =()) - Ym (u) 1 

we can use (2.4) and (2.6) to obtain (2.1) and (2.2). oi 

We note that, for every weight w, the zeros of pm (w) interlace with those 
of pm+ I(w); therefore, the natural extended interpolation of even degree is 
Lagrange interpolation with respect to the zeros of 12m+? = Pm(W)Pm+I (w) . 

Theorem 2.1 shows that this choice can be generalized to involve two differ- 
ent weights w and wT. In the particular case w(x) = (1 _ x2) 112, we have 
w = (1 - x2)1/2 and we obtain the known result that the zeros of the Cheby- 
shev polynomial of the second kind Um interlace with those of the Chebyshev 
polynomial of first kind Tm+ I, i.e., 2 Um Tm+ I = U2m+ l 

The following theorem allows us to construct extended interpolation formulae 
of odd degree. 

Theorem 2.3. If w is any weight function and w1 (x) = (1 - x)w(x), W2(X) = 

(1 + x)w(x) , then the polynomial V2m = Pmr(Wi)Pmr(W2) satisfies 

(2.8) VJm(xmri(wl))= -Dm(l +Xmj,i(W)) Am,j(w1), 

i= , ...,m, meN, 
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(2.9) V2tm M, i( 2))= ml Xm, i (2)) im i(2 
i=l,...,m, meN, 

where Dm = Ym(W2)/Y(Wi) +Ym(Wi)/Ym(W2)< <00 

Hence pm(wl) and Pm(W2) have no common zeros and there holds 

Xm i(WI)< Xm,i(W2) i= 1,..., m, meN. 

Proof. Consider the Fourier expansion of pm (w1) in the system {Pk (W)} with 
wT(x) = (I1- X2)W(X)2 

m 

(2.10) Pm(WI; X) =E CkPk (T; X) 
k=m-I 

where 

Ck =1 pk(T; x)pm(wl; x)w(x) dx, k= m - 1, m. 

In particular, cm_1 = Ym_i(w)/ym(wj) and cm = ym(wj)/ym(w). Then, by 
(2.10), 

(2.1 1) Pm(w ; Xm,i(W2)) 
Ym (WU) PM-I(;Xm(W2)) 

+ mi 

(w 1) 

4 Ym(w 
) 

Pm(w; xm, i(W2)) 

Considering the Fourier expansions of (1 -X)Pm (wU; x) and of (1 -X)Pm_ I (w; x) 
in the system {Pk (W2) }, we have by similar computations 

(1 m, 1(W2))Pm (UT;Xm, i(W2))= 2( ) Pm - I(W2; Xm i (W2)) 

(1 -Xm i(w2))Pm( IT;Xm i(W2)) - Ym (UT)Pm -(w2; Xm i(W2)) 

These relations, together with (2.1 1), give us 

(2.12) (1 -Xm, i(w2))pm(wI; Xm, (W2)) =Empm_I(w2; Xm i(W2)), 

with 
Em = Ym-1(W2)/Ym(W1) + Ym(W1)Ym-1(W2)/Y2m(W2) > 0. 

We finally consider the Fourier expansion of Pm (w2) in the system {Pk (W)} 

m 

(2.13) Pm(w2; X) Z dkpk(I; x), 
k=m-I 

where 

dk= pk(T;;x)pm(w2;x) T(x)dx, k=m-1,m, 
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and obtain dm__l = -Ym-i(V)/Ym(W2) and dm = Ym(W2)/Ym(Y) . Then, by 
(2.13), 

Pm(w2;xm,i(wi))= - 
Ym () (w; xm i(W) 

(2.14) +Ym (W2) 
+ P (P(T; xm i (WO)) 

Similarly, 

(1+ Xm i(w ))Pm(T; xm i(w)) = _ym(w)ym i(wi)PmI(w 

O1+ xm, i(w 
Y)m-l_;Ii(Wt)) fP/-(;x(l 

MPM (T; x, i 
YmwiM() 1'_ (W m,i i/UO 

These relations, together with (2.14), yield 

(2.15) (I1 + xm,i(w1))Pm(W2;xm,i(wi))= -FmPm-i(wl;xm i(wI)) 

with 

Fm 
= 

Ym-i(WI)/Ym(W2) + Ym(w2)ym- 1(W1)/2Ym(WI) > 0. 

From (2.12) and (2.15) we conclude that the zeros of pm(wl) are different from 
those of Pm(W2). Now, since 

2M (xm, 1-(w M = PM (wI; Xm, i(W1))Pm (W2 Xm i (W M) 

Vjm(Xmi(W2)) =p (w2; Xm i(W2))Pm(W; Xm, i(W2), 

recalling (2.7), we use (2.12) and (2.15) to obtain (2.8) and (2.9). From Theo- 
rem 2.1 one obtains the boundedness of Dm. ? 

Remark. For our purposes it was sufficient to prove Theorems 2.2 and 2.3, as- 
suming the measure dy absolutely continuous; however by Theorem 2.1, The- 
orems 2.2 and 2.3 are true for every measure du E M. 

In the particular case w(x) = (1 - x2)1/2, we have 

w1(X) =2(1 -x)2(1 ? -1/2 W = -1 

and we obtain the well-known separation property given by the identity 

-1 
kU2M 

k = I1-3 ---(2m -l) 
Pm(KW)Pm(Wl) - m2m' m 2.4. (2m) 

The preceding theorems assure us that the polynomials Pm (wJ) and Pm+ I (w), 
as well as pm(wl) and Pm(W2), have no common zeros; thus, it is possible to 
construct extended interpolation rules on their zeros. 



CONVERGENCE OF EXTENDED LAGRANGE INTERPOLATION 203 

We first consider the extended interpolation polynomial L2m+1 (w, w; f) on 
the zeros t2m+l1i 2m + I = oflQ2m+, I=p Pm(UT)pm+I(w)W 

L2m+?1(W, TW; f; x) Q2m+(X) f(t2m+ , 
i=1 Q2m+ I (t2m+ , ) (X - t2m+ 1, i) 

m?l 
Q2m +I(X)f(mi() 

Qm+(xm+ i, (W ) )(X- xm + , i ) ( w ) 
) 

m Q2m+ I(X) fx QH) 

+= Z Q2m+ I (xm,( )) (X - (W) ) m,i 

Recalling (2.1) and (2.2), we can thus write 

L2m+i(W, WT; f; x) = Cm`Pm+i(W; x)pm(QJ; x) 
(m?1 (W( 2 

(2.16) x { +' A M+l,it (w+), f(xm + 1 i M)) 

f(xm w) 
i X-Xm,i(T) 

where Cm = Ym(w)/Ym+I (w) + Ym+I (w)/Ym(U) 
Similarly, by (2.8) and (2.9), the extended interpolation polynomial 

L2m(w , w2; f) on the zeros of V2m = Pm(WI)Pm(W2) takes on the form 

L2m(Wi , W2; f; x) = Dm Pm(WI ; X)pm(W2; x) 

(2.17) x { M,i (w2) Xm (W2)(X M,(w 2)) 

m l?xm i(wi) 
EAm,i(Wi) 

1 
f(xm i(w ' 

i=1 x - 
Xm, i(Wi) 

where D = Ym(W2)/Ym(W1) + Ym(W1)/Ym(W2) 
Since, for any weight w, the fundamental Lagrange polynomials are 

In, iW; X) 
= 

> (w)An, i (W)Pn - I(W ; X,, i M))Pn (W) ' 

X 
x) 

n y~(W) 
nl x -Xn, (w) 

by the recurrence formula of pn((w), we can write the extended interpolation 
polynomial L2m+I (w, w; f) on the zeros of 12m?1 = Pm(w)Pm+I (w) as 

L2m+1(W' W; f; X) = /Ym(w) pm(w; X)Pmn+I(W; x) L2m+i(ww;f;x)=Ym? I(W) P 

(2.18) x _E f(XM +i(W)) 

m 
Am, i(w) 
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Furthermore, if r and s are nonnegative integers, we may consider the ex- 
tended quasi-Lagrange interpolation polynomial on the zeros of Q2m+1 = 

pm .()Pm+ (w) and on the points i . For the definition of quasi-Lagrange 
interpolation polynomimal see [1 1]. Recalling (2.1) and (2.2), we deduce that 
this is the polynomial of degree 2m + r + s represented in the form 

L(rm+, 
s 

(W, UT; f; X) 

= Cm (I - ) (I + x) Pm+ I (w; X)Pm (UT; x) 

x + 
A m+ 1, (W)f (xm+ , i (W)) 

(2.19) i=1 (x _ Xm+ ,I(w))(l- Xm+ I(w)) + Xm+ i(W)) s 

m 
Am, i (UT)f(Xm i ()) _s 

(x-Xm i(W))(l-Xmi(W ))(1 +X.Qi(.))sJ 

+ hi(x)f(-l) + h2(x)f(l), 

where 

h (x) = (1 +x)SPm((UT; x)pm+I(w; x) 

x E(-l))4- 
j=0 j! Lpm(w; t)Pm+I(W; t)(l + t)s] (1- 

h2(x) = (1 - x)rpm(UT; X)pm+I(W; x) 

- i! [Pm (w; t)pm+I (w; t) ( - t)r] ( l + x) 

Similarly, by (2.8) and (2.9), the extended quasi-Lagrange interpolation poly- 
nomial on the zeros of V2m = Pm(wI)Pm(W2) and on the points +1 can be 
written in the form 

L2ms) I w2; f; x) 

m DX)(l - X)(l + X) Pm(W1; X)Pm(W2; x) 

(2.20) ~~~ A m, i (W2) f (Xm i (W2)) 

i=l (X -Xm, i(W2 )) (1Xm, i (W2 )) (1+ Xm , i (W2) ) 

m ( f m i(w2)f(XM)i(W)))) 

i=1 (X Xm,i(Wi))(l - Xm i(W1))r(1 + Xm i(W1))s I1 

+ k, (x)f(- l) + k2(x)f(l), 

where k, and k2 have the same expressions as h, and h2, with w and UT 
replaced by w1 and w2, respectively. 
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Finally, we consider the extended quasi-Lagrange interpolation polynomial 
on the zeros of 12m+l = Pm (w)pm+I (w) and on the points ?1, 

L2_m+)Y(W,W; ;) 

- mM (1-X)r(l +X))Pm+l(W; X)pm(W; X) 

(2.21) x m+l i(W)f(Xm i 
.i= (x - Xm+Ii (w))(l - Xm+i ,i(W)) (I +Xm+i ,(W))s 

Aim, i(w)f(xm, i(W)) 

i1(x - Xm 1(w))(1- Xm i(W)) r(1 +Xm 1(w))s 

+ hI(x)f(-1) + h2(X)f(l), 

where h and h2 have the same expressions as h1 and h2, with T replaced 
by w. 

As we have already said in the introduction, our formulae are simpler than 
the corresponding ones for ordinary extended interpolation, and also for 
ordinary interpolation (cf. (1.1)). Indeed, the terms pm(W; Xm+i i(w)) and 

pm_-(T; Xm i(T)) are not present in the two sums of (2.16); moreover, each 
sum is independent of the zeros that appear in the other. This facilitates the 
study of convergence. 

3. ON THE DISTRIBUTION OF THE ZEROS OF Q2m+1 AND V2M 

Theorems 2.2 and 2.3 assure us that for any weight w the zeros of Q2m+1 

and V2m are different from one another and, furthermore, they all belong to 
(-1, 1) . However, if we assume that w is a generalized smooth Jacobi weight 
(w E GSJ), then we can obtain more precise results. Such a weight is defined 
by 

n 

w(x) = (Px)( l - x)' 1 Ix- tk17k ( + X)3 -1 x , 

k=1 

where al, Yk > -1, k = I, ...,n, - < tl < t2 < . < tn < , and 

O < p C DT := {g c C[-I, l] f l(g; 6)63 1d6 < oo}; here w denotes the 
usual modulus of continuity. 

We now prove the following 

Theorem 3.1. If w c GSJ and w = (1 - x 2)w(x), then the zeros t2m+l i - 

Cos 02m+1, i =1, ... , 2m ? 1, of Q2m+I = Pm+i (W)Pm(W) , in natural order, 
satisfy 

(3.1) 02m+1,i -02m+1, i+ m 

uniformly in I < i < 2m, m E N. 

IIf A and B are two expressions depending on some variables, then we write A B if and 

only if IAB' II < const and [A ?1 B < const , uniformly for the variables in question. 
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Proof. From Theorem 2.2 we have 

Xm+i(w) < Xm,i(W) < Xm+,i+I(W), i = 1,2, ...,m. 
Therefore, in order to prove (3.1), it is sufficient to show that 

(3.2) Xm i(J)-xm+i'i(w) 1 X 
XM+I i+l(w)-xM,i 

uniformly in 1 < i < m, m E N and x E [xm+,i (w), xm+i,i+I((w)I 
We prove the first equivalence of (3.2) by using a technique used already in [3] 

and suggested by Nevai. We recall that the fundamental Lagrange polynomials 

lm,i(w) can be written as 

(3.3) lm+i'i(W;X)= YM(W) ,i(Wp w;xm ,iM PM+,i(W x) 

Ym+. I(w) , m 
m+iwi(W)Pm(WXm+ii(W)) m+ 

(W) 
Moreover, it is well known that 

Im+i,i(W; x)I | 1, x E [xm+i 1i(W) Xm+i,i+i(W)] 
(see [11]). Thus by (3.3), with x = xm,i(W) E [xm+i i(W), xm+i+1(w)], we 
conclude 

I mW - (W)Mlp (W; x IPM+ I |+(w ; xm, i(UM I 
Ym+i(W) m+liI m 1 i M 

Xm i(W)-Xm+,i(W)I 

Then by (2.6), and since 
Ym(W) B l, 

Ym+I (w) 

we have 

1 im+i,i(W)IPm(W; Xm+i,i(w))IIpm-i(ii; xmi(T))I IXm,i(wU)-xm+i,i(w)I 
Since w, UT E GSJ, the relations 

(3.4) Am (w; X) ̂ - m wM(x), 

(3.5) w(Xm i(W))P2-I(W; Xm i(W)) 1 2-,i(W) 

where 
n 

(.)w(X)=('-+ 1 )2a+l JI -1 )2fl+1 (3.6) WM( 
X ( + m 1)2>1 O(tk- X I + M -')k (V/+mX ) 

k=1 

(see [11]), taking into account that 

Xm+i i(W)VX- Xm i(W) forxE[xm+i,i(w),xmxi(T)], 

imply 

Xmi(LY) Xm+ ~(w '~ in ( -Xm+i,i(w) )a/2+3/4(l +X M+1, i(W))8'2+3/4 
(1 -( XM (-O))a/2+l/4(1 + Xm (u))fl/2+1/4 

This relation implies immediately the first equivalence of (3.2). The second is 
proved similarly. 0 

We omit the proof of the following theorem, since it is very similar to that 
of the previous one. 
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Theorem 3.2. If w E GSJ and wI(x) = (1 -x)w(x), W2(x) = (1 + x)w(x), 
then the zeros Z2m, i = COS2m, ii 1, *,2m, of V2m = Pm(w )pm (w2), in 
natural order, satisfy 

ag2m, i a2m,i+1m 

uniformly in 1 < i < 2m - 1, m E N. 

Remark. Theorems 3.1 and 3.2 are not needed to study convergence of the 
extended interpolation formulae (2.16), (2.17), (2.19), and (2.20). We have 
stated them here, since they may be useful for finding the numerical solution 
of singular integral equations by collocation methods. Indeed, the integrals 
(in the Cauchy principal value sense or weakly singular) which appear in the 
equation, are often treated by two different interpolations (one corresponding 
to the collocation and another to the quadrature). In order to avoid divergence 
and numerical cancellation, it is necessary that the collocation points and the 
quadrature knots are not only different from one another, but also sufficiently 
far apart. 

4. UNIFORM CONVERGENCE OF EXTENDED INTERPOLATION 

We start with some preliminary remarks, assuming w E GSJ throughout. 
For any x E (-1, 1), m E N, we denote by XC(m)(w) = Xm,c(W) the knot 
closest to x, defined by 

x Xmd(W) if x-Xm,d(W) < xm,d+l(w)-X, m,c Xm,d+l(W) fxXm,d(W) > Xm,d+l(w) X, 

where Xm d(W) < x < Xm, d+1 (W) for some d E {0, 1, .. ., m} and xm0 (w) 
= -1, Xm m+I(W) = 1. By Theorems 3.1 and 3.2, and recalling (3.4), we find 

(4.1) AM (w) (I-x X+ , i (w)) (1+x+,() 

1 
AM,i p)(I- xm,-ir+1 +xm iw)) 

-s 

(4.2) -r+I -S-r - 

(4.2) - Am i(Wl )( 2-(1 
- Xmi)) ( (I + xm, i(w )) 

where w (x) = (1 - x 2)w(x), w1 (x) = (1 - x)w(x), w2 (x) = (1 +x)w(x), and 
r, s E N. The equivalences (3.5), (4.1), (4.2) and the inequality 

(4.3) Ipm(W; x) < constw* (x)-1 /2 

where w is defined by (3.6) (see [11]), allow us to write 

(4.4) iPm (UT; X)Pm+I (w ; x) lx l Xm c (UT) I 1 

(4T5) fPm(Wn; X)Pm(W2; X)l po te e(ue rs)ut. 

The following lemmas are needed to prove the subsequent results. 
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Lemma 4.1. Let r, i, m be positive integers with m > max{ 4(r + 1), r + i}. 
Given any function f E Cr[-1, 1], there exists a polynomial qm of degree m 
such that for x E [-1, 1] 

q(k) (?1) =f(k) (?1), k= O, I,.. r, 

(k) (k) I i-x2 1 r-k 

Iqm (X)-fm (x)I < const [ 2 

X co ft(r); \ / + 2)I k = ,1,.. r, 

(k) (k FlX2l 
Iqm (x) fmk)(x)I < const [ m J 

xe f(r) ; 
V 

) k= ,1,.,ri 

where cwi(g; 3) = SUPO<h<5IIAhgII[l-, l-ih], J > 0, is the ith modulus of conti- 

nuity. 

This lemma follows from Satz 4.2, 5.4, and 5.5 in [7]. 
Defining the functions 

SM(W; 1; X) mi - xM i(w))' 
i#c 

i#c 

L5 (W; T; X) =m 
(IT xm,i(w)I + m' )Y 

m 

~~~mlx-xm() 

where c denotes the index corresponding to the closest knot to x, T is a fixed 
point belonging to (-1, 1), and a, 3, y are real numbers, we also have the 

following lemmas. The proof of these results can be found in [4]. 

Lemma 4.2. If w E GSJ, then for every xe[-1, 1] 

M-2a1- 1( + -1)-2 + (1+ m-I)2a-1 logm 

or |if a <-1/2, 
Sm(w); 1; X) < const / + m-I2o-1 Ilog m if - 1/2 < a < 1/2, 

(Vm-l I2or- Ilogmi+1 if a > 1/2. 
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Lemma4.3. If w E GSJ, then for every x E [-1, 1] 
M-26-1 (V+X + M-1)-2 + (V\+X+ M- 1)26-1log M 

6 
(w; -I;x) < 23nt1i-1 2<-1/23 S~ wi~+ ~7 l++mM -+( 1+x+m ) ogm if - < -1/2, 

Sm(; -; x < ons l +x+ m)2-logm if-l1/2?< 5?<l/2, 

+mX+ M -) 2- logm+ 1 if 3 > 1/2. 

Lemma 4.4. If w E GSJ, then for every x E [-l, 1] 

SY(w; T; x) < const log 
n if Y 

f O. 

For the sake of brevity, we shall prove the following theorems only for 
w(X) = u ( = (1 - X)( + x)6, a, > -1; but the extension to the 
more general case w E GSJ is very easy. 

Theorem 4.1. Let w = ua'18. a,fl > -1. For any function f E Cs[[-, 11, 

s > O, we have 

If(x) - L2m+1(W, w; f; x)l 

(4.6) < const [log m + ( -x + m-1 -2a-2 

+ (V~+~Xm 
1 ) 21- 

2](9sf; mI ), 
ixi < 1 

where const is independent of f and m. 

Proof. Let qm be the polynomial defined by Lemma 4.1 corresponding to the 
function f. Then by (2.16), 

If(x) - L2m+i(W, w; f; X)I 

< lf(x)- qm(x) | + IL2m+ (w, Iw; f -qm; X)I 

<constwos(f;im 

x{1 +Ipm+i(W;X)pmQ (WJ;X)2 { + IPM+ I (w; X)PM (; x)l [I +l 
i 

)-xm+ 
( 

M+E Ai(W) 1 

ix Ix m Xm+i(w)) 
Recalling (4.1), (4.3), and (4.4), we obtain 

-1 2a-i2 -1 2fl+2 
(V81- SX + m -T + m Xlf(x) L2m+i(W, w; f; x) 

< const ( f; m1)sm(x), 

where c is the index corresponding to the closest knot to x. 
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Since 

SM(X) < (1 +X) +3/2Z (1 Xmi(W,))c31 

+ x)c+3/2 (1 +Xm i(W)),632 

m (xm(x-X) 

M-12ai+3 (1 +Xm,i( ) +3/ 

+ ( 1 x +m m (xmiJ)-x) 

and applying Lemmas 4.2 and 4.3 with a, J > 1/2, respectively, we have 

Sm (X) < (V ~~X + m-1 2,8+3 [( i- -1 )2a+2 logm + 1] 

- 1 3 
m) + m- l+2 logm + 1]1 +( 1-X +m ) [ + + ) lg+] 

Combining this last inequality with (4.7), we obtain (4.6). o 

We note that inequality (4.6) improves a result obtained in a different way in 

[2, Corollary 2]. The following theorem shows that the extended interpolation 

polynomial L,2l 1) (w, w; f) has a better behavior. 

Theorem 4.2. Let w = ua'', c, ,B > -1. For any f E Cs[-l, 1], s > 0, we 
have 

If(x) - L(;) (w, WH; f; X)I 
-1 -2a 

(4.8) <constlogm[( Vm1-x +m 

+ (Ofi+ X+m ) ]cWS(f; m ), ixi < 1 

where const is independent of f and m. 

Proof. Let qm be the polynomial defined by Lemma 4.1 corresponding to the 
function f; thus, qm(?i1) = f(?1). 

Recalling (4.1), (4.3), and (4.4), and proceeding as in the proof of the Theo- 
rem 4.1, we find 

(1-x + m-l )2 +( + m-)2IL("2) (w UT; f; x) - f(x)I 

< const wos (f; m1) 2 2 )mIx () 

i EQ 

t f, (I -xm (W)) - ( WI + )I(w)) 

=: consoS(WM IX )Xm)i(W)i 

constwos(f ; m )SM(X). 
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Assuming that a, ft < 0, we have 

Sm(X) ? ( +m- ) ( + xm, iE(W) 

+-1 m2l x ( -xm, i (i ) 
1 

i#&c 
+(V/T~+Xi=M mlx-xmiW 

Thus, applying Lemmas 4.2 and 4.3, we obtain (4.8). 
On the other hand, if a < 0 and ft > 0, then 

Sm(X)?( 1- m ( m (I +X 1m(xX),+(1/2 m W -)Ia+l/2 

SM(X)<V/'_1-X~+Mmlx-xm'i(i)I MX X'() 

Applying Lemmas 4.2 and 4.3, we deduce (4.8). Finally, if a > 0 and ft < 0, 
or a > 0 and ft > 0, then (4.8) follows again. o 

Inequality (4.8) improves two results obtained in a different way in [2, Corol- 
laries 1, 3]. 

We omit the proof of the following theorem, since it is very similar to the 
proofs of Theorems 4.1 and 4.2, making use of inequalities (4.2) and (4.5) 
instead of (4.1) and (4.4). 

Theorem 4.3. Let w = a, ft > -1. For any function f E Cs[-1, 1], 
s > 0, 

If(x) - L2m(Wi 5 W2; f; x)l 

< const [log m + ( -x + m 

+( +-m -2l2 a ]0S(f; 
m I 

ixi 
< 1, 

I(x-2m )l15 W2; f; x)I 

< const log m[( 1-x+ m-l)-2a 

+ ( x + m- )- ]chO(f; m- )5 ixi < 1, 

where const is independent of f and m. 

Finally, the following theorem exhibits the behavior of the interpolation for- 
mulae (2.18) and (2.21). 

Theorem 4.4. Let w = u ac, ft > -1. For any function f E Cs[-1, 1], 
s>0, we have 

If(x) - L2m+l(w, w; f; x)I 

-1 log m + (f m-1)-2 < const wos (f; m [ + m- I 

+logm+(1+m ~ l) +] M - 1, 

1+x m-1 j IxI1 



212 G. CRISCUOLO, G. MASTROIANNI, AND D. OCCORSIO 

If(x)-L2m 1l (w, W; f; x) I 
1) o -1)12a < const (f; m )ogm[(1 + m j 

+( 1++m- ) I-2, 

IxI<?, a,f>?O. 

We omit the proof, since it is very similar to the proofs of the previous 
theorems. 
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